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We introduce an optimization method to design examples of photonic quasicrystals with substantial, com-
plete photonic band gaps; that is, a range of frequencies over which electromagnetic wave propagation is
forbidden for all directions and polarizations. The method can be applied to photonic quasicrystals with
arbitrary rotational symmetry; here, we illustrate the results for fivefold and eightfold symmetric quasicrystals.
The optimized band gaps are highly isotropic, which may offer advantages over photonic crystals for certain
applications.
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I. INTRODUCTION

Photonic materials with complete photonic band gaps
�PBGs�, i.e., frequency ranges over which electromagnetic
wave propagation is prohibited for all directions and polar-
izations, are artificial dielectric heterostructures that enable
control of the generation and flow of light. Their
development1,2 has evolved dramatically in the last decade
and their unusual properties have found a wide range of ap-
plications including efficient radiation sources,3 telecommu-
nications devices,4 sensors,5 and optical computer chips.6

Until recently, the only known materials with complete
PBGs were photonic crystals comprised of a periodic ar-
rangements of dielectric materials. In photonic crystals, the
opening of the PBG is understood to be governed by the
synergetic interplay between Bragg scattering resonances of
the periodic dielectric array and the Mie resonances of indi-
vidual dielectric scattering centers.7

A similar combination of scattering mechanisms is pos-
sible in photonic quasicrystals, in which the dielectric mate-
rials are arranged in a pattern with long-range quasiperiodic
translational order and rotational symmetries forbidden to
crystals �such as fivefold symmetry in two dimensions and
icosahedral symmetry in three dimensions�.8 Quasiperiodic
order also produces Bragg scattering.8 In fact, there have
been numerous studies of photonic quasicrystals with PBGs
in the literature.9–16 Their band gaps are found to be consid-
erably more isotropic and, for two-dimensional quasicrystals,
the dielectric contrast required to open the band gaps for TM
polarization �electric field oscillating out of the plane� is
smaller than the contrast required for the periodic
counterparts.10 Most of the photonic quasicrystalline struc-
tures considered only have band gaps for either TM- or TE-
polarized radiation.9,13,15 Two examples of complete band
gaps have been found previously;12,16 here we present a sys-
tematic method to produce substantially greater fundamental
complete band gaps for photonic quasicrystals with arbitrary
symmetry.

In general, the architectures required for optimal TM band
gaps are quite different than optimal architectures for TE
polarization �electric field oscillating in the plane�. Structures
based on a distribution of isolated dielectric inclusions �e.g.,

rods� is best for TM band gaps while structures based on
connected dielectric networks are optimal for TE.17 For the
case of quasicrystalline systems, with their rich variety of
local environments, the problem of finding an optimal com-
promise becomes more difficult. Consequently, until now,
there has not been a systematic procedure for designing qua-
siperiodic photonic structures with sizable PBGs for all di-
rections of propagation and polarizations.

In this paper, we introduce an optimization scheme dis-
cussed in Ref. 18 �where it was applied to disordered hetero-
structures� to design two-dimensional photonic quasicrystals
with substantial complete PBGs, comparable to the largest
band gaps found for photonic crystals. The examples illus-
trated here are based on the vertices of a Penrose tiling,19 a
fivefold symmetric pattern composed of obtuse and acute
rhombi and on the vertices of an octagonal tiling,20 an eight-
fold symmetric pattern composed of squares and rhombi.

In Sec. II, we describe how the quasiperiodic patterns are
constructed. In Sec. III, we present the results of the band-
structure calculations and analyze the properties of the result-
ing PBGs including the field distribution of the photonic
modes that define the photonic band edges. Section IV pro-
vides concluding remarks.

II. NEARLY OPTIMAL PHOTONIC BAND-GAP
STRUCTURES FROM QUASIPERIODIC

POINT PATTERNS

The Penrose and octagonal quasicrystalline point patterns
considered in this work are constructed by the projection and
cut method,21 which consists of projecting the points of an
n-dimensional hypercubic lattice into the three-dimensional
space, where n=4 for the octagonal lattice and n=5 for the
Penrose lattice. In general, the lack of spatial periodicity
makes it impossible to define a unit cell for band-gap calcu-
lations; we address this by using a series of rational periodic
approximants of the quasicrystal. In the case of the Penrose
lattice periodic approximants are constructed by the same
projection method by replacing by a Fibonacci ratio ��n
= pn /qn=1 /1,2 /1,3 /2,5 /3, . . .�. The unit cell is rectangu-
larly shaped and its area grows as n increases and the rational
approximant approaches �. In particular, for a rational ap-
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proximant �n= pn /qn, the unit cell has dimensions Lx=5�pn
+qn��−1� ,Ly =�3−��pn�+qn�� and contains N=10pn�p
+2qn� vertices of the rhombic pattern. In the case of the
octagonal quasilattices, we replace by its continuous fraction
series ��n= pn /qn=1 /1,3 /2,7 /5, . . .� and the resulting peri-
odic approximant has a square-shaped unit cell of side L
= pn+�qn containing N= �pn+ ��2+��qn��pn+ ��2−��qn� verti-
ces of the square-rhombic pattern. The periodic approxi-
mants constructed this way results in tilings consisting of
identical tiles as the original quasiperiodic tiling and transi-
tion from quasiperiodicity to periodicity is accommodated
through the flipping of a certain number of tiles. These ra-
tional periodic approximants are known to be the best ap-
proximants of the quasiperiodic lattice as they achieve the
selected periodicity by introducing the minimum density of
defects with respect to the perfect quasiperiodic tiling.22 The
vertices of the tilings obtained by this method form a se-
quence of quasicrystal approximant point pattern.

The next step is to find the arrangement of dielectric ma-
terial around the point pattern that produces the optimal TM,
TE, and complete PBGs. Identifying these optimal dielectric
distributions is well known to be a daunting computational
task, despite the recent development of rigorous mathemati-
cal optimization methods.23–25

For the case of TM radiation only, a nearly optimal deco-
ration for a given point pattern is obtained by placing iden-
tical dielectric cylinders centered at each point and adjusting
the radius. For the optimal radius, there is a coincidence of
Mie and Bragg scattering effects that lead to substantial band
gaps.7 The dielectric cylinders support Mie scattering reso-
nances and, for frequencies above the lowest-order reso-
nance, the scattered radiation is out of phase with the inci-
dent wave. This destructive interference prohibits radiation
propagation and favors the opening of a complete TM gap.15

At the same time, the quasiperiodic long-range order in qua-
sicrystalline systems results in a dense �no minimum separa-
tion� collection of Bragg peaks; however, it is notable that
most of Bragg-peak intensities are infinitesimally small. The
first set of intense Bragg peaks is associated with scattering
on planes separated by the average distance in the quasicrys-
talline point pattern and can be employed to define an effec-
tive Brillouin zone. Therefore, as for photonic crystals,
Bragg scattering also contributes to the PBG formation in
photonic quasicrystals such that, whenever the wave vector
of the incident radiation is directed along the effective
Brillouin-zone boundary, the reflected and refracted waves
interfere to cancel the incoming wave and prevent its propa-
gation inside the structure. An optimal band gap occurs when
the two scattering mechanism reinforce each other on a given
spectral range. This approach can be applied to find near
optimal TM band gap for the fivefold and eightfold quasic-
rystal patterns obtained by projection.25

To obtain the optimal PBGs for TE radiation, where the
electric field is oriented in the plane of the scatters, necessi-
tates a different dielectric arrangement. Instead of isolated
cylinders, a connected network of dielectric with air pockets
in between is favored. For example, a commonly used con-
figuration for photonic crystals is “inverted” compared to the
optimal structures for TM PBGs, i.e., placing an identical air
cylinder at each point so as to produce a connected network

of dielectric material. However, in the case of quasicrystal-
line structures, we find this method fails to produce sizable
fundamental TE PBGs. The main reason is that the inverted
structure has a very nonuniform distribution of dielectric
scattering regions that broadens the distribution of reso-
nances. Similarly, placing walls along the edges of each Pen-
rose tile as in Ref. 9 has rather nonuniform connectivity and
fails to produce an optimal TE PBG.

To overcome this problem, we employ a protocol intro-
duced in Ref. 18 that converts a general point pattern into
photonic heterostructures with sizeable, nearly optimal TE
PBGs. We briefly review the protocol here: consider an arbi-
trary point pattern denoted by red/gray disks in Fig. 1. In the
example in the figure, the point pattern is enclosed in a
square domain with periodic boundary conditions. First, we
perform a Delaunay tessellation of the original point pattern.
This provides a triangular partitioning that minimizes the
standard deviation of the triangle angles around the mean of
� /6. Next, associated with each triangle is a centroidal point;
these are connected with line segments to form cells around
the original points. The nearly optimal heterostructure for TE
band gaps is obtained by decorating the edges of the cell
network with walls �along the azimuthal direction� of dielec-
tric material of uniform width w, as displayed in Fig. 1. We
note that this procedure is universal and can be used to gen-
erate connected network architectures based on periodic,
quasiperiodic, and disordered point patterns. Finally, the op-
timal structure is obtained by varying a single parameter, the
cell thickness, and identifying the value that maximizes the
TE band gap.

The total number of cells in the network is the same as the
number of points in the original point pattern and each vertex
of the network is trivalent. The cells can be regarded as
individual scattering objects supporting electromagnetic
resonances, which become coupled to each other when
placed into the connected network.

With an additional step, the protocol can be used to a

FIG. 1. �Color online� Protocol described in Sec. II maps the
vertices of a rhombus tiling �red/gray points� into a network of cells
whose vertices are trivalent �black segments and points�. To con-
struct a photonic material with a complete band gap, edges are
replaced by a wall of dielectric of finite thickness and the vertices
are replaced by cylinders of finite radius.
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heterostructure with a nearly optimal complete PBG, i.e.,
maximal overlap between TM and TE gaps. Namely, each
vertex of the trihedral network constructed above is deco-
rated with a cylinder or radius r. The number of cylinder is
equal to twice the number of cells. The optimal complete
band gap obtained by varying the two free parameters, the
cell wall thickness w and cylinder radius r. As shown in Fig.
2, the Fourier spectrum of the decorated photonic structures
obtained through this protocol fully preserve the symmetries
of the original point pattern. In comparison, alternative de-
signs based on inverted architectures or decorations of the
quasicrystal tile edges with dielectric walls and its vertices
with dielectric cylinders fails to open sizable complete
PBGs.

III. PHOTONIC BAND-GAP RESULTS

We compute the photonic band structures for the optimal
heterostructures �described in detail below� using a conven-
tional plane-wave expansion formalism.26 For this approach,
which assumes a periodic structure, we use a sequence of
increasingly accurate periodic approximants and check for
convergence. For the purposes of illustration, we assume the
photonic materials are composed of silicon �with dielectric
constant �=11.56� and air. In all the numerical simulations,
we use 322�NP plane waves to achieve convergence accu-
racy of better than 1% for the lowest NP photonic bands.
Here NP represents the number of scattering centers �TM
case�, cells �TE case� or centers and cells �TM+TE case�.
Most of the band-structure calculations are preformed around
a contour along the first Brillouin zone of the respective
system, which includes the high-symmetry k-space points,
�=0, X=b1 /2, M= �b1+b2� /2, and Y=b2 /2, where b1 and
b2 are the basis vectors of the reciprocal lattice considered.

TM Band Gaps. To obtain optimal TM PBGs for a given
symmetry, dielectric cylinders are placed at the vertices of
the tilings obtained by projection.

For example, an optimized fivefold symmetric quasicrys-
talline pattern derived using the protocol from a n=5 /3 pe-

riodic approximant of the Penrose pattern displays a TM
PBG of �� /�C=39%. An analogous optimized structure
based on the n=7 /5 periodic approximant of the octagonal
lattice displays a TM PBG of �� /�C=42%, where �C is the
gap central frequency. The optimal radius of the cylindrical
inclusion is r /a=0.177 for the Penrose tiling and r /a
=0.189 for the octagonal lattice, were a is the side length of
the rhombic tiles obtained by projection. As a check, we
perform a convergence analysis as the order of the periodic
approximant increases; as shown in Fig. 3, the results are
fully convergent.

We find that the band gap for the optimal structures al-
ways occurs between bands NP and NP+1 where NP is the
number of points in the periodic approximant point pattern.
This is an analogous behavior to the band folding that occurs
in periodic structures when analyzed with a supercell
approach.

TE Band Gaps. The optimal TE band-gap designs are ob-
tained by the protocol described in Sec. II. They correspond
to the network of walls connecting the centroids of the De-
launay tiling. In the case of the fivefold symmetric quasic-
rystal, the optimum has wall width w /a=0.103; the TE band
gap is �� /�C=42.3%, the largest ever reported for a photo-
nic quasicrystal. For the octagonal quasicrystal, the optimal

FIG. 2. �Color online� Optimal photonic crystal and quasicrystal
heterostructures and their diffraction patterns derived from �a� a
periodic sixfold symmetric point pattern; �b� a fivefold symmetric
quasicrystal �Penrose� tiling; and �c� an eightfold symmetric quasi-
crystal tiling.

(b)

(a)

FIG. 3. �Color online� The fractional PBG width for �a� fivefold
symmetric and �b� eightfold symmetric photonic quasicrystal as a
function of the number of particles in the periodic approximant for
the optimal TM �red circles�, TE �orange squares�, and complete
�green diamonds� band gaps.
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structure has dielectric material width w /a=0.106 along
each edge, which produces a TE band gap of �� /�C
=39.2%.

The TE band-gap formation is analogous to the TM case
in that it involves an interplay between scattering from indi-
vidual cells and the Bragg scattering of the quasiperiodic
arrangement of scattering planes. Similar to the case of TM-
polarized radiation, we also obtain that the band gap for the
optimal structures always occurs between bands NP and NP
+1 where NP is now the number of cells in the structure.

Complete Band Gap. For the complete band gap, we find
that the optimal structure consists of placing a wall along
each edge and a cylinder at each trihedral vertex of the net-
work generated by the protocol in Sec. II. The optimum for
the fivefold symmetric case has cylinder radius is r /a
=0.157 and cell wall thickness w /a=0.042. For the eightfold
symmetric point patterns, the optimum is r /a=0.167 and
w /a=0.014. The scattering properties of the individual scat-
tering centers and cells are again essential in the band-gap
opening and the complete band gap occurs always between
bands 3NP and 3NP+1, where NP is the number of points in
the periodic approximant point pattern �there are 3NP total
scattering units in the system, 2NP dielectric disks, and NP
dielectric cells�.

The resulting optimal fivefold symmetric structure dis-
plays complete �TM and TE� PBG of 16.5%—the first com-
plete band gap ever reported for a photonic quasicrystal with
fivefold symmetry and comparable to the largest band gap
�20%� found for photonic crystals with the same dielectric
contrast.27 The optimal eightfold symmetric structure has a
full PBG of 13.5%.

As shown in Fig. 4, the band-gap size obtained by con-
sidering a contour along the Brillouin zone is completely
consistent with the density-of-states calculations. Similar to
the case of the TM and TE PBGs, the system-size study
presented in Fig. 3 reveals that the band-gap size becomes
independent of the size of the periodic approximant when
NP�100 �with NP the number of points in the original point
pattern�, implying that our results have converged to the
large-system limit.

For a photonic crystal, the states at the photonic band
edges are propagating modes such that the electromagnetic
field is distributed throughout the system. If the periodicity is
disturbed, localized states begin to fill in the gap so that the
states just below and just above become localized. Although
the nature of the electromagnetic states in quasiperiodic
structures needs to be further investigated, similar features
are displayed by photonic quasicrystalline systems. In Figs.
5�a�–5�d� and 6�a�–6�d�, we compare the azimuthal electric
field distribution for modes below or above the band gap
�plots �b� and �d� in Figs. 5 and 6�, which display an ex-
tended character with the field distributed among many sites;
and then modes at the band edges �plots �a� and �e� in Figs.
5 and 6�, which show a high degree of spatial concentration.
We also find that the formation of the TM band gaps is
closely related to the formation of electromagnetic reso-
nances localized within the dielectric cylinders �as shown by
the �a� and �b� plots in Figs. 5 and 6� and that there is a
strong correlation between the scattering properties of the
individual scatterers �dielectric cylinders� and the band-gap

location. In particular, the largest TM gap occurs when the
frequency of the first Mie resonance coincides with the lower
edge of the photonic band gap.15 Analogous to the case of
periodic systems, the electric field for the lower band-edge
states is well localized in the cylinders �the high-dielectric
component�, thereby lowering their frequencies; and the
electric field for the upper band-edge states are localized in
the air fraction, increasing their frequencies. As shown in
Figs. 5�e�–5�h� and 6�e�–6�h�, an analogous behavior occurs
for the azimuthal magnetic field distribution for TE modes:
for states near the lower edge of the gap, the azimuthal mag-
netic field is mostly localized inside the air fraction and pre-
sents nodal planes that pass through the high index of refrac-
tion fraction of the structure while states near the upper edge
display the opposite behavior.

IV. CONCLUSIONS

In sum, we have shown that it is possible to expand the
spectrum of dielectric materials with sizeable complete band
gaps to include photonic quasicrystals by introducing a con-
strained optimization procedure. The quasicrystalline photo-
nic structures can be manufactured using standard fabrication
techniques used for photonic crystals.27

(b)

(a)

FIG. 4. �Color online� Photonic band structure and density of
states for fivefold and eightfold symmetric photonic quasicrystals.
�a� Photonic band structure and the corresponding density of states
for a network constructed via the protocol in Sec. II from a 2/1
periodic approximant of the Penrose tiling with optimized cylinder
radius r /a=0.157 and wall thickness w /a=0.042. The structure has
a complete PBG of 15.14% with central frequency �c / �2�a�
=0.43. �b� Photonic band structure and the corresponding density of
states for a network constructed from a 3/2 periodic approximant of
the octagonal quasilattice with optimized cylinder radius r /a
=0.1613 and wall thickness w /a=0.0136. The structure has a com-
plete PBG of 13% with central frequency �c / �2�a�=0.44.
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Photonic crystals, the quasicrystals considered here, and
the disordered heterostructures discussed in Ref. 18 are all
decorations of hyperuniform patterns.28 A point pattern is
hyperuniform if the number variance within a spherical sam-
pling window of radius R �in d dimensions� grows more
slowly than the window volume for large R, i.e., �NR

2�
− �NR�2=ARp, where p	d. Two dimensional crystal and qua-
sicrystal patterns both correspond to p=1. Our conjecture in
Ref. 18, which was supported by a variety of examples,
stated that a higher degree of hyperuniformity �smaller coef-
ficient A� is advantageous for obtaining substantial complete
PBGs. In the Appendix, we provide the first calculations of
the coefficient A for two-dimensional quasicrystals, namely,

the fivefold and eightfold examples considered here. The
number variance for quasicrystals is greater than for crystals
�for the same density� and less than the variance of disor-
dered heterostructures. The results here are consistent with
our conjecture in that the width of the optimal complete band
gaps for the photonic quasicrystals lies between the optima
found for crystals and disordered heterostructures.

Although photonic crystals have slightly larger complete
band gaps, quasicrystalline PBG materials offer advantages
for many applications. In the case of quasicrystalline struc-
tures the PBGs are significantly more isotropic, which is ad-
vantageous for use as highly efficient isotropic thermal ra-
diation sources.29 The properties of defects and channels
useful for controlling the flow of light are different for crys-
tal and quasicrystal structures. Radiation with frequencies

FIG. 5. �Color online� Panels �a�–�d� show the electric field
distribution for a fivefold symmetric photonic quasicrystal opti-
mized for TM polarized radiation. The structure consists of dielec-
tric cylinders of radius r /a=0.177 placed at the vertices of a Pen-
rose tiling and displays a TM photonic band gap of 36.5%. Lower
�a� and upper �c� band-edge modes display a well-defined degree of
localization; modes just below the lower band edge �b� and just
above the upper band edge �d� display an extended character. Panels
�e�–�h� show the magnetic field distribution in fivefold symmetric
quasicrystalline network optimized via the protocol in Sec. II for TE
polarized radiation. The structure consists of trihedral network with
wall thickness w /a=0.102 and displays a TE PBG of 42.5%. The
lower �e� and upper �g� band-edge modes display a high degree of
spatial concentration and modes just below the lower band edge �f�
and just above the upper band edge �h� display an extended
character.

FIG. 6. �Color online� Panels �a�–�d� show the electric field
distribution in eightfold symmetric structures for TM-polarized ra-
diation. The structure consists of dielectric cylinders of radius r /a
=0.189 and displays a TM PBG of 42%. Lower �a� and upper �c�
band-edge modes displaying a well-defined degree of localization;
modes just below the lower band edge �a� and just above the upper
band edge �d� displaying an extended character. Panels �e�–�h� show
analogous magnetic field distributions in eightfold symmetric het-
erostructures optimized via the protocol in Sec. II for TE-polarized
radiation. The structure consists of trihedral network with wall
thickness w /a=0.101 and displays a TE PBG of 40%. Lower �e�
and upper �g� band-edge modes display a well-defined degree of
spatial concentration; modes just below the lower band edge �f� and
just above the upper band edge �h� display an extended character.
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above or below the band edges are propagating modes that
are transmitted through photonic crystals but are more local-
ized modes in the case of quasiperiodic patterns, which give
the former advantages in some applications, such as light
sources.30 On the other hand, due to the lack of translational
symmetry, PBG structures constructed around quasiperiodic
point patterns can provide a large number of inequivalent
local environments and as such can support a rich variety of
localized modes. These localized modes can be employed to
design laser systems with highly unusual field patterns with
possible applications to biological sensing.31

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation under Grant No. DMR-0606415.

APPENDIX: ASYMPTOTIC NUMBER VARIANCE FOR
THE FIVEFOLD AND EIGHTFOLD QUASICRYSTAL

POINT PATTERNS

Here we compute the asymptotic number variance for the
fivefold and eightfold quasicrystal point patterns in two di-
mensions obtained from the Penrose and octagonal tilings.
For such point patterns, the number variance for large win-
dows grows like the perimeter of the window, i.e.,

�NR
2� − �NR�2 = A

R

D
+ O�1�, R → 
 , �A1�

where R is the window radius and D is the mean-nearest-
neighbor distance associated with the point pattern. In order
to compare the dimensionless surface area coefficient A for
different point patterns, the comparison must be made at the
same number density � �number of points per unit volume�.
It was shown in Ref. 28 that this amounts to rescaling A such
that A /��, where

� = �
�

4
D2 �A2�

is an effective packing fraction. Thus, we define the rescaled

coefficient Ã�A /��.
The rescaled surface-area coefficients can be evaluated

numerically by employing finite large quasicrystalline point
patterns �of around 15 000 points� and count the number of
points in a circular window of radius R. For a fixed radius,
the circular window scans the quasicrystalline domain and
the variance of the number of points in the window is evalu-
ated �the windows employed in our calculations contain from
a few to 5000 points and to calculate the variance we use
1000 configurations with a fixed window size�. The surface-
area coefficient is then obtained by analyzing the behavior of
the number variance in the limit of large window size.

We find that the rescaled surface-area coefficients for the
fivefold and eightfold cases are given, respectively, by

Ãfivefold=0.60052 and Ãeightfold=0.59567. Our results for
these quasicrystal cases should be compared to results for
some periodic point patterns; for the triangular, square, hon-

eycomb and Kagomé lattices, Ãtriangular=0.508347, Ãsquare

=0.51640, Ãhoneycomb=0.56702, and ÃKagome=0.58699,
respectively.28 It is noteworthy that the triangular lattice has
been proven to have the smallest surface-area coefficient
among all lattices and is thought to be the global minimum
among all point patterns. Thus, we see that the quasicrystal
point patterns studied here have a high degree of hyperuni-
formity, even if not as large as that for the aforementioned
crystals. These calculations of the surface-area coefficients
and PBGs reported here are consistent with the conjecture
made in Ref. 18, namely, that the width of complete PBGs of
high-dielectric contrast photonic structures is correlated with
the degree of hyperuniformity of the underlying point
pattern.
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